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Abstract 

Building Blocks for 3D Integrated Circuits: Single Crystal Compound Semiconductor Growth 
and Device Fabrication on Amorphous Substrates 

by 
Debarghya Sarkar 

Committee: Prof. Rehan Kapadia (Chair), Prof. Michelle Povinelli,  
Prof. Jayakanth Ravichandran, Prof. Han Wang 

 
Over the past five decades, the world has made rapid technological progress supported by 

the advancement in solid-state electronics and photonics. Referred to as the Moore’s Law, the 
fundamental mechanism for making a better microprocessor chip has been the reduction of 
footprint of individual operational units (field effect transistors), thus increasing the chip 
functionality and performance by increasing planar density. However, there is an impending 
problem. Improving integrated circuits by device miniaturization is coming to an end, since device 
miniaturization is reaching its fundamental physical limit. A potential novel approach for 
continued improvement is a three dimensional (3D) multifunctional integrated circuit. However, 
there are several challenges associated with fabricating a 3D IC, and this dissertation is aimed at 
experimentally establishing the viability of potential solutions to some of the fundamental 
problems. Those are: (i) the ability to integrate single crystal semiconductors on an amorphous 
buffer, (ii) at a temperature below 400 0C so that underlying active layers are not affected, and (iii) 
to be able to fabricate high-performance devices out of them. 
A recently introduced non-epitaxial growth technique called thin film – vapor liquid solid growth 

that showed the ability to grow large area grain size (10-100 m) polycrystalline film on metal 
foils, has been adopted as the primary material growth method. It has been first generalized to be 
integrable on any substrate including amorphous and crystalline dielectrics (i.e. not just limited to 
metals), and its geometrical constraints from a thermodynamic perspective are established. This 
has allowed for a wide variety of compound semiconductor materials (III-Vs and IV-Vs) to be able 
to be grown as templates upto tens of micron in lateral dimension on a wide variety of 
technologically relevant substrates. Extensive photoluminescence measurements and analyses 
have been performed, which indicate excellent optoelectronic performance comparable to that of 
commercial single crystal InP wafer. Temperature dependent photoluminescence, Hall mobility, 
and electron back-scatter diffraction studies demonstrate the ability to grow high quality single 
crystal III-Vs below 400 0C on amorphous substrates including on flexible substrates such as 
polyimide. Room temperature Hall mobility reaching 6000 cm2/V-s for InAs grown at 300 0C on 
HfO2, and contact-resistance limited FET mobility of 500 cm2/V-s for InP grown on SiO2, have 
been shown: one of the highest values so far for any material family directly grown on an 
amorphous dielectric. A scalable platform for obtaining artificial synapses has been demonstrated 
by modulation of oxide-semiconductor interface trap occupancy in InP nanowire FETs. Finally, 
selective growth of MOCVD epitaxial layers on these single crystal templates have been briefly 
studied as precedents to obtain ultra-high performance devices on the back-end of CMOS chips. 
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Chapter 1 

A Brief Summary of my Research 

 My Ph.D. research has been centered on materials and device innovation as potential 
candidates for future three dimensional integrated circuits (3D ICs). This chapter of my 
dissertation highlights the main research results in a comprehensive but relatively high-level 
narrative. Following chapters build on the highlights mentioned here, and give an in-depth fine-
detailed-technical description of the experiments and their outcomes. 

1.1 3D Integrated Circuits: Why? What? How?  

Let us start with the question: why do we need 3D integrated circuits?  

Over the past five decades, the world has witnessed rapid technological growth driven by 
progress in computational ability. This increase in the operational bandwidth has been engineered 
by integrating a higher number of operational units per unit area of the microprocessor chip by 
reducing the size of each operational unit, called Field Effect Transistor devices (FETs). Famously 
referred to as the Moore’s Law,1 this trend of making a better microprocessor chip by incorporating 
larger number of FETs, has been successfully followed for multiple consecutive generations of 
chip design (Figure 1.1). However, there is an impending problem. Improving integrated circuits 
by device miniaturization is coming to an end, since device miniaturization is reaching its 
fundamental physical limit. A potential novel approach for continued improvement is a three 
dimensional (3D) multifunctional integrated circuit. 

 

Figure 1.1: Historical trend of increasing device density and reducing device dimension. Data 
from en.wikipedia.org/wiki/Moore%27s_law and …/Transistor_count 
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What can be a zeroth order description of of a 3D IC architecture?  

A representative cartoon of a 3D multifunctional integrated circuit is shown in Figure 1.2. 
Essentially, there would be multiple functional circuits for logic, communication, and memory 
operations stacked on top of each other in the same chip. One may think of it as a vertically stacked 
motherboard with different circuits performing modular functions (logic, memory, etc.) in the 
same chip, instead of different modular chips performing their functions and communicating 
across the present-day motherboard. It is important to have 3D to get higher density of integration 
(versus state-of-the-art 2D integration). And it is important to integrate multiple materials to 
achieve multiple functionalities, since each material is ideally suited for unique applications. 
Silicon has been the backbone material for the semiconductor industry all along due to early 
advantages in manufacturing processes. But it is far from being the ideal semiconductor material 
considering performance of devices. Compound semiconductors are a general class of materials 
that have electronic and optoelectronic properties far superseding that of silicon, but have not quite 
found their way into mainstream electronic devices because of economic disadvantage in 
traditional growth processes and difficulty in efficient integration. 

 

 

Figure 1.2: Schematic representation of a potential 3D IC stack.  
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So how can we fabricate such a structure?  

There are several challenges associated with fabricating a 3D IC so that no commercial 3D IC 
exists today despite this idea being there for literally decades. This dissertation is aimed at solving 
some of the most fundamental problems to help pave the way forward. Those are:  

(i) we need to integrate single crystal semiconductors on an amorphous buffer,  
(ii) at a temperature below 400 0C so that underlying active layers are not affected, and 
(iii) we should be able to fabricate high-performance devices out of them. 

1.2 Epitaxial lift-off and transfer 

The most widely used approach towards that currently followed, is some variant of this 
method called epitaxial growth and transfer.2 In this case, semiconductor layers are epitaxially 
grown on lattice matched substrates, and through multiple steps, transferred to the host substrate 
on which devices are fabricated (Figure 1.3). This is successfully followed in many academic 
setups and in some commercial applications, but there are also some well-known important 
drawbacks: the process is expensive, is not scalable over large areas required for industrial 
production, and has access to limited materials stemming from lattice matching and suitable 
release-process constraints.  

 

 

 

Figure 1.3: Integration of high performance devices by epitaxial lift-off and transfer. 
Reproduced with permission from [2]. Copyright 2010, Springer Nature. 
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1.3 Direct non-epitaxial growth? 

Alternatively, can we directly grow single crystal materials on amorphous materials 
instead? The traditional methods for semiconductor growth such as metal-organic chemical vapor 
deposition (MOCVD) and molecular beam epitaxy (MBE) would give single-crystalline growth 
only when grown on single-crystal substrates. On the other hand, these methods would give a poly-
crystalline material (Figure 1.4) when grown on a buffer layer which is inherently amorphous.3 
Poly-crystalline materials would give device performance that are orders of magnitude lower than 
that of their single-crystalline counterparts. This is the most important roadblock that has prevented 
efficient integration of multifunctional high-performance devices in the past. 

 

1.4 Thin Film – Vapor Liquid Solid growth 

 On the other hand, a novel growth technique was recently developed, called thin film 
vapor-liquid-solid,4, 5 where it was shown that large area single crystal indium phosphide (InP) 

with grain size of the order of 100 m to 1 mm can be grown on refractory metal foils (Figure 1.5). 
This was the first step towards growth of crystalline compound semiconductor film on a non-
epitaxial substrate. 

 

Figure 1.4: Polycrystalline InP by MOCVD directly on amorphous Mo foil. Reproduced with 
permission from [3]. Copyright 2012, American Institute of Physics. 

 

Figure 1.5: Ultra-large-grain size polycrystalline InP by TF-VLS directly on amorphous Mo 
foil. Reproduced with permission from [4]. Copyright 2013, Springer Nature. 
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How is it done? Well, as represented in Figure 1.6 (a), indium (In) is first deposited on 
molybdenum (Mo) foil, and capped with silicon dioxide (SiO2). This is then taken to the furnace 
and heated to a growth temperature of 450-800 0C, where In is molten. Phosphorus (P) is 
introduced in the vapor phase which percolates through the SiO2 capping layer, and gradually 
saturates liquid In. As it gets slightly supersaturated, InP is precipitated. Now, once the first InP 
nucleus forms, a depletion region of P is created around it driven by the high diffusivity of P in 
liquid In, such that the concentration of P in that region is always below the solubility of P in liquid 
In, and no InP is nucleated in this region. The second InP nucleus forms a distance away from the 

first, of the order of 100 m to 1 mm, determined by the P flux and the initial In thickness. 

The plot in Figure 1.6 (b) is an experimental verification of this model, where it is seen that the 
nucleation density reduces with lower P flux, thereby giving rise to larger grain sizes. This work 
was pioneered by Kapadia et. al. at UC Berkeley. 

 

1.5 Templated Liquid Phase (TLP) growth 

 Then it was proposed that if we pattern the indium so that the lateral dimension is less than 
a typical depletion length, each pattern will form only a single crystal.6 

1.5.1 Single Crystal Compound Semiconductor mesas on Diverse Substrates 

 Building on that, my research efforts first demonstrated growth of single crystal compound 
semiconductor mesas on diverse substrates.7  

 

Figure 1.6: (a) Schematic of controlled grain size in TF-VLS growth. (b) Experimental 
verification of nucleation model. Reproduced with permission from [4]. Copyright 2013, 
Springer Nature. 
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Schematically shown in Figures 1.7 (a-d), we start with patterns of In capped with SiO2 on a 
substrate. This is then taken to the growth furnace and heated to the growth temperature in presence 
of phosphine (PH3). The PH3 flux is controlled to ensure single nucleation in each pattern, which 
with time, gradually grows as a single crystal to achieve single crystal InP in each pattern. Figures 
1.7 (e-h) are a sequence of SEM images of InP nucleating in a pool of In, gradually growing as a 
single crystal until the entire pattern is transformed to InP, so that the entire pattern is a single InP 

crystal (which in this case, is 6 m diameter). Although InP is used to describe this process, it may 
be noted that it’s not just InP that can be grown by this process. In fact we have grown many 
different materials, and on a wide variety of substrates, as shown in Table 1.1. 

 

Figure 1.7: (a) Schematic of TLP growth of InP on any substrate. (b) Representative SEM of 
InP nucleating and growing in a pool of indium. Reproduced with permission from [7]. 
Copyright 2018, American Chemical Society. 

 

 

Table 1.1: Different materials grown by TLP method on different substrates. 
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As representative examples, Figures 1.8 (a-c) are some experimental results, showing growth of 
different stoichiometries of indium gallium phosphide, different stoichiometries of tin phosphide, 
as well as an atomically sharp lateral heterojunction between InP and Sn4P3. 

Also, Figures 1.9 (a-c) are transmission electron microscope images showing InP grown on 
crystalline Gd2O3, amorphous TiO2, and 2D graphene. 

 

 

Figure 1.8: (a) In-Ga-P, (b) Sn-P, (c) InP-Sn4P3 lateral heterojunction grown by TLP method. 
Reproduced with permission from [7]. Copyright 2018, American Chemical Society. 

 

Figure 1.9: InP grown on (a) crystalline Gd2O3, (b) amorphous TiO2, (c) 2D graphene. 
Reproduced with permission from [7] (Copyright 2018, American Chemical Society) and [9] 
(Copyright 2018, American Vacuum Society) 
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1.5.3 Large Area (>100 m) Single Crystal 

 Moving forward, we worked on expanding the area of the crystal, e.g. the mesas in Figure 

1.10 (a) are over 100 m in length and 5 m in width. As evident by electron backscatter diffraction 
(EBSD) inverse pole figure imaging in Figure 1.10 (b) (i-vi), each mesa is represented by a single 
color, and is therefore a single crystal. 

 

1.5.4 Crystal Quality Analysis of TLP InP 

 Figure 1.11 is a collage of representative (scanning) transmission electron microscopy 
(S)TEM images of TLP InP. Figure 1.11 (a) shows InP growing directly on graphene transferred 
on SiO2. The selective area electron diffraction (SAED) in Figure 1.11 (b) and the high resolution 
TEM in Figure 1.11 (c) indicate the high crystalline quality of the grown films. However, it may 
also be noted that given the stacking fault energy for III-Vs is low, these grown films often have 
multiple stacking faults as shown in Figure 1.11 (d) and twinning present within the crystals as in 
Figure 1.11 (e). 

 

 

 

 

Figure 1.10: (a) InP growing as a single crystal in a Hall element structure, (b) single 
crystallinity indicated by EBSD. 
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1.5.4 Surface roughness of TLP materials 

As seen in Figure 1.12, the typical surface roughness of the grown films can be controlled 
to within 1-2 nm RMS roughness. This is mainly determined by the initial indium film roughness, 
which is controlled by evaporating indium at relatively low rates and with the samples connected 
to a liquid nitrogen cooled stage to reduce surface mobility of incident In atoms. 

 

Figure 1.11: (a) STEM image of InP on graphene transferred to SiO2, (b) SAED and (c) 
STEM image of InP on TiO2, (d) Stacking faults in InP on Gd2O3, (e) Twinning in InP on 
HfO2. 

 

Figure 1.12: AFM map of representative TLP InP surface.  
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1.5.5 Dewetting of Liquid Indium on Diverse Substrates 

 Before we go forward, it may be better to take a step back and recognize that the translation 
from growth on metals to growth on dielectrics is actually non-trivial. Compared to this flat film 
of InP on Mo (Figure 1.13 (a)), when similarly tried to be grown on SiO2 (Figure 1.13 (b)), it 
doesn’t stay flat. When patterned on molybdenum oxide (MoOx), it stays as intended (Figure 1.13 
(c)), but forms holes when done on dielectric surfaces (Figure 1.13 (d)). The reason is that most 
substrates are “indium-phobic” causing In to dewet when it’s molten. 

 

To understand this better, we worked on a thermodynamic model, where we calculated the Gibbs 
free energy of formation of two different structures: one wetting i.e. without void (Figure 1.14 (a)), 
and one dewetting, i.e. with void (Figure 1.14 (b)). When we subtract one from the other, we get 
the Gibbs free energy of formation of the void, and plot it as a function of void radius (r) for 
different template radii (RT). As can be seen here (Figure 1.14 (c)), that for a given initial thickness 
of In (h), there is finite probability of void formation, and a thermodynamically stable size of voids. 
On the other hand, no stable void formation would occur for templates below a certain size for the 
given indium thickness. In other words, liquid templates would always wet a given substrate once 
they are above a critical aspect ratio. 

 

 

Figure 1.13: Representative InP growth on different substrates before wetting control. 

Reproduced with permission of copyright owner. Further reproduction prohibited without permission.


