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1 Abstract 

2 Novel oxychalcogenides, such as Bi2O2Se, have many applications because of their interesting properties such as 

3 remarkable hall mobility, presence of a bandgap, and high air stability. Among them, photodetectors based on 

4 Bi2O2Se are one of the best applicable devices. In addition, the Bi2O2Se heterostructure with other 2D materials 

5 can enhance the photoresponse of the device. In this study, we successfully fabricated the WSe2/Bi2O2Se 

6 heterostructure for photodetector application via in situ pulsed laser deposition. The band alignment of the as-

7 grown WSe2/Bi2O2Se heterostructure was confirmed to be type II, which increases the photoresponse. Furthermore, 

8 the WSe2/Bi2O2Se photodetector exhibited an approximately 110% on/off ratio with a photoresponsivity of 0.96 

9 mA/W even without using lithography for its fabrication.
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1 Introduction

2 Two-dimensional (2D) materials such as layered metal chalcogenides (LMDs), graphene, black phosphorous 

3 (BP), and hexagonal boron nitride have drawn tremendous interest as promising materials for electronic and 

4 optoelectronic devices because of their extraordinary properties.[1–9] However, the practical applications of these 

5 conventional 2D materials for electronic and optoelectronic devices are limited because of the zero bandgap of 

6 graphene and air instability of LMDs and BP; therefore, the use of novel alternative 2D materials is required. 

7 Recently, Peng et al. reported the use of Bi2O2Se as a novel layered oxychalcogenide owing to its tremendous Hall 

8 mobility (~450 cm2∙V−1∙s−1 at RT and >20,000 cm2∙V−1∙s−1 at 1.9 K), non-zero bandgap (~1 eV), and high air 

9 stability.[10–15] Accordingly, Bi2O2Se was widely used for various applications such as field-effect transistors (FET), 

10 photodetectors, thermoelectrics, and memristors.[16–21] Among them, Bi2O2Se-based photodetectors are one of the 

11 most intensively studied applications because they show an ultra-fast photoresponse, high detectivity, and a wide 

12 photodetection range from visible to infrared.[14, 22–24] Despite many merits of Bi2O2Se and other 2D materials, there 

13 are some drawbacks, including the difficulty in synthesizing large-scale thin films, a non-sharp interface of 

14 heterostructures, and relatively complex device-fabrication processes when conventional synthesis methods such 

15 as hydrothermal, chemical vapor deposition, and mechanical exfoliation are used.[11, 25, 26]

16 Heterostructures with type-II band alignment have many advantages in terms of photoresponse. They can 

17 offer not only expansion of the response spectrum range by overcoming the intrinsic bandgap property but also 

18 high stability and low operation voltages.[27–31] Moreover, a type-II heterostructure facilitates separation of electron–

19 hole pairs (EHPs), in turn enhancing the photoresponse of photodetectors.[32] In this perspective obstacles for 

20 photodetectors in Bi2O2Se which shows high dark current and relatively low on/off ratios could solve through type-II 

21 heterostructure.[33–35] Among the many candidates for 2D heterostructures with Bi2O2Se, we adopt WSe2 for its 

22 desirable band position for the formation of type-II band alignment and strong light absorption, which consequently 

23 provides high photoconversion efficiency.[36, 37] 

24 For high-performance photodetection, J. Sun et al. and X. Chen et al.  reported the effect of piezo-phototronics 

25 in photodetection, overcoming the limitation of perovskite solar cell based photodetector and improving the transfer 

26 efficiency of the photon-generated carriers, respectively.[38, 39] Despite many efforts to enhance the performance of 

27 photodetection, direct and wafer-scale synthesis of heterostructure is challenged by limitation of methodologies. 

28 Recently, physical vapor deposition methods such as pulsed laser deposition (PLD) and molecular beam epitaxy 

29 have been reported for fabricating large-scale 2D materials.[40–42] Particularly, uniform and stoichiometric 2D 

30 chalcogenide thin films without deficiency of chalcogen atoms can be grown via PLD. Thus, it is suitable for the 

31 growth of large-scale 2D materials.[43] In addition, the number of layers, which affects various properties of 2D 

32 materials, can be precisely controlled via PLD.[44, 45] More interestingly, uniform 2D heterostructures without 

33 intermixing phases could be realized via direct in situ PLD.[46, 47] For these reasons, the PLD method is appropriate 

34 for manufacturing 2D heterostructures composed of Bi2O2Se, which is one of the ways of advancing the 

35 performance of photodetectors.

36 Usually, a complex lithography process, which involves patterning, lifting off, and deposition of electrodes, is 

37 essential for fabricating electronic devices. These processes leave a large amount of organic residue on the surface 

38 of thin films and at the interface between thin films and metals; this majorly affects the efficiency of the device. In 

39 particular, because conventional 2D materials such as transition-metal dichalcogenides (TMDs) are vulnerable to 

40 humidity, many studies have attempted to avoid a complex lithography process.[48–53]
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1 Herein, we present a simple process of device fabrication with the growth of centimeter-scale 2D 

2 WSe2/Bi2O2Se thin films via PLD. First, we deposited multilayers of Bi2O2Se and WSe2 on a c-plane Al2O3 substrate 

3 via direct in situ PLD (details in the experimental section). We further investigate the structural, electrical, and 

4 optical properties of the WSe2/Bi2O2Se heterostructure grown by PLD. Finally, we fabricated WSe2/Bi2O2Se 

5 photodetectors with a patterning-free process and investigated their optical characteristics.

6 Results and Discussion

7 To fabricate the in situ heterostructure of 2D materials (here, WSe2/Bi2O2Se), we first deposited multilayers of 

8 Bi2O2Se and WSe2 on a c-plane Al2O3 substrate through PLD (see the experimental section for the fabrication of 

9 Bi2O2Se and WSe2 thin films). As previously reported, the PLD system can easily control the stacking order of thin 

10 films using a multi-carousel target rotation system as well as their thickness by adjusting the number of laser 

11 pulses.[45, 54] As shown in Figure 1a, all of the samples (WSe2/Bi2O2Se heterostructures and single films of Bi2O2Se 

12 and WSe2) were uniformly deposited on the c-plane Al2O3 substrate (10 mm × 10 mm) without any optical gradation. 

13 The thicknesses of the as-grown Bi2O2Se and WSe2/Bi2O2Se heterostructures were 20 and 26 nm, respectively, 

14 as confirmed by atomic force microscopy (AFM) (Figure S1a and b). The schematic of Figure 1b illustrates the 

15 WSe2/Bi2O2Se photodetectors fabricated using Cu wire and Ag paste without any additional patterning process.

16

17 Figure 1. (a) Photograph of PLD-grown WSe2/Bi2O2Se thin films on c-Al2O3. (b) Schematic of fabrication of the 

18 WSe2/Bi2O2Se device, i) deposition of WSe2/Bi2O2Se thin films via the PLD method, ii) stacking sequence of the 

19 heterostructure, iii) fabrication of the WSe2/Bi2O2Se device with wiring, and iv) measurement of photoresponse 

20 using a monochromator with 450 nm wavelength.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4194617

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



5

1 The structural properties of the WSe2/Bi2O2Se heterostructures were further investigated by Raman 

2 spectroscopy in the range of 110–300 cm−1 for each sample. Figure 2a shows the results of Raman spectroscopy 

3 for Bi2O2Se (red line) and WSe2/Bi2O2Se (blue line). As previously reported, a characteristic peak at 159 cm−1 (A1g) 

4 caused by the out-of-plane vibrational mode of Bi2O2Se was clearly observed (Figure 2a).[55] Contrarily, in 

5 WSe2/Bi2O2Se heterostructures, the overlapped peak (E1
2g + A1g) of WSe2 (253 cm−1) and peak of Bi2O2Se with a 

6 blue shift (169 cm−1) were observed. Theoretically, the presence of a negative uniaxial strain, i.e., uniaxial 

7 compression, which occurs to modify the crystal phonons in low-dimensional materials cause a blue shift.[55] The 

8 known lattice constant of an axis of WSe2 is defined as 3.286 Å, while that of an axis of Bi2O2Se is 3.88 Å. Therefore, 

9 lattice mismatch occurred during the in situ growth of WSe2 and Bi2O2Se heterostructures. Consequently, the blue-

10 shifted peak at 169 cm−1 for Bi2O2Se was caused by the negative uniaxial strain. For fabrication of large-scale 2D 

11 material-based electronic and optoelectronic devices, the spatial uniformity of thin films is one of the most important 

12 parameters. To confirm the uniformity of the WSe2/Bi2O2Se heterostructure, we performed the Raman mapping 

13 measurements for the WSe2/Bi2O2Se heterostructure (Figure 2b–d). First, the Raman spectra recorded at 11 

14 different points of the heterostructure show clear peaks corresponding to WSe2 (253 cm−1) and Bi2O2Se (169 cm−1). 

15 Although there was a slight difference in the peak intensity, we confirmed that all peaks corresponding to thin films 

16 were well matched. In addition, the Raman mapping of the WSe2/Bi2O2Se heterostructure was obtained on the 

17 basis of peak intensities at the center of 169 and 253 cm−1, which are the characteristic peaks of Bi2O2Se and 

18 WSe2, as shown in Figure 2c and d, respectively. Although Raman mapping measurements were conducted under 

19 half of the area (5 mm × 5 mm) of the entire substrate (10 mm × 10 mm), the Raman spectra of Bi2O2Se and WSe2 

20 were clearly observed at the center position except for some points.

21

22 Figure 2. Structural analysis of WSe2/Bi2O2Se. (a) Spectral acquisition of the Bi2O2Se single layer (red line) and 

23 the WSe2/Bi2O2Se heterostructure (blue line). (b) Entire Raman spectra of the WSe2/Bi2O2Se heterostructure from 

24 the last row (points 110 to 121). Raman mapping based on the peak intensity for (c) Bi2O2Se at 169 cm−1 and (d) 

25 WSe2 at 253 cm−1 in the WSe2/Bi2O2Se heterostructure.
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1 Furthermore, X-ray photoelectron spectroscopy (XPS) was performed to determine the chemical bonding 

2 characteristics of Bi2O2Se (Figure 3a–c) and WSe2/Bi2O2Se (Figure 3d–g) thin films (XPS analysis of WSe2 is 

3 shown in Figure S3). According to the Bi 4f spectra (Figure 3a), the two fitted peaks at 164 and 158.7 eV clearly 

4 matched the peaks of Bi 4f5/2 and Bi 4f7/2, which are attributed to Bi2O3 bonding. XPS spectra also showed the O 

5 1s peaks at 530.9 and 529.6 eV caused by Bi2O3, as well as the doublet peaks corresponding to Se 3d at 53 and 

6 53.8 eV. All of these binding energies of each spectrum could be assigned to the elements Bi, O, and Se of Bi2O2Se; 

7 this indicates that the chemical bonding characteristics of our Bi2O2Se thin film coincide with those reported in 

8 previous studies.[56] In addition, the XPS spectra show the peaks corresponding to each element, namely, Bi 4f, 

9 O 1s, W 4f, and Se 3d, for the WSe2/Bi2O2Se heterostructure (Figure 3d–g); these are also consistent with those 

10 in previous reports.[36] However, there were some differences compared with the spectra of the single Bi2O2Se thin 

11 film. In addition to the peaks at 164 and 158.7 eV, the peaks in the XPS spectra of Bi 4f of the heterostructure were 

12 observed at 166 and 160.6 eV, which were due to the Bi2Se3 bonding. Likewise, the peak of O 1s also differed 

13 because of the hydroxyl group (–OH) and organic C–O bonding. As shown in Figure 3f, for W 4f of WSe2, two major 

14 peaks and a relatively small peak can be ascribed to W4+ of 4f7/2 and 4f5/2 and W6+, respectively, from oxidized W. 

15 As shown in Figure 3g, the spectra for Se 3d of the WSe2/Bi2O2Se heterostructure have distinct peaks located at 

16 55.3 and 54.5 eV caused by WSe2 and 53.8 and 53 eV caused by Bi2O2Se. In addition, quantitative analysis 

17 indicates a Bi/Se ratio of 1.9:1 and a W/Se ratio of 1:2.2.

18

19 Figure 3. XPS spectra of (a) Bi 4f, (b) O 1s, and (c) Se 3d of the multilayers of Bi2O2Se. XPS spectra of (d) Bi 4f, 

20 (e) O 1s, (f) W 4f, and (g) Se 3d of multilayers of the WSe2/Bi2O2Se heterostructure.
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1 The electronic structure and band gap of WSe2 and Bi2O2Se thin films were investigated using ultraviolet 

2 photoelectron spectroscopy (UPS). As shown in Figure 4a and b, the work function (W) of each film was obtained 

3 on the basis of the difference in the photon energy (with He I light source, 21.21 eV) and the secondary electron 

4 cut-off energy. In addition, the valence band edges of the thin films were determined as 0.64 and 0.33 eV, 

5 respectively, by the lowest binding energy. Consequently, the formation of band alignment between WSe2 and 

6 Bi2O2Se can be illustrated as the type-II heterojunction, as shown in Figure 4c. The band alignment of the 

7 WSe2/Bi2O2Se heterostructure enables photogenerated carriers to be readily separated and transported to the 

8 electrodes, thereby improving the photoresponse compared to that of single-layer Bi2O2Se.

9

10 Figure 4. (a, b) UPS analysis for the electronic structure of Bi2O2Se and WSe2, respectively. (c) Expected band 

11 alignment of the WSe2/Bi2O2Se heterostructure.

12 After confirming the band alignment, we investigated the photoresponse characteristics of the WSe2/Bi2O2Se 

13 heterostructure. Because Bi2O2Se shows extremely high mobility, photogenerated carriers from Bi2O2Se are 

14 expected to be readily separated.[32] The photoresponse characteristics of the WSe2/Bi2O2Se heterostructure were 

15 evaluated with normalized time-dependent photoresponse under simulated chopped irradiation at an interval of 20 

16 s of on and off with a repetition of 15 cycles. Consequently, we observed approximately 110% of on/off 

17 photoresponse ratio (Figure 5a). Compared to the WSe2/Bi2O2Se heterostructure, multilayer Bi2O2Se thin films 

18 showed a lower photoresponse. The improved photoresponse characteristics of the WSe2/Bi2O2Se heterostructure 

19 can be attributed to its type-II band alignment (Figure 4c), which induced the facile charge transfer of 

20 photogenerated carriers from the heterostructure. Responsivity, which is one of the most important factors in a 

21 photodetector, is defined as Rph = Iph/(PI × A), where Iph is the photocurrent, PI is the incident light power, and A is 

22 the incident area. It was observed as 0.96 mA/W under a light intensity of 0.76 mW/cm2 at 0.1 V. Considering that 

23 the wiring used in this study shows a relatively lower signal-to-noise ratio and higher ohmic drop compared to those 

24 of general electrode patterns such as interdigitated electrodes (IDEs), a 110% on/off ratio is a remarkable value.[57] 

25 Furthermore, as Figure 5b shows, the photocurrent of multilayer Bi2O2Se thin films exhibited extremely low on/off 
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1 ratios; therefore, they are difficult to use as an optoelectronic device. This indicates that the type-II band alignment 

2 of the WSe2/Bi2O2Se heterostructure is helpful in separating the photogenerated EHP. Figure 5c shows the 

3 enlarged range of the entire cycle. Rise (τr) and decay (τd) times are also defined as the time to transition between 

4 an increase of more than 90% from the minimum and a decrease of more than 90% from the maximum, respectively. 

5 As a result, the response time is τr = 0.5 s and τd = 1 s.

6

7 Figure 5. (a) Time-dependent normalized photoresponses of Bi2O2Se and WSe2/Bi2O2Se heterostructures at 0.1 

8 V under a wavelength of 450 nm. (red line: Bi2O2Se; blue line: WSe2/Bi2O2Se). (b) Comparison of the on/off ratio. 

9 (c) The measurement of response speed of rise (0.5 and 0.5 s) and decay (1 and 0.5 s) times.

10  

11 Conclusions

12 In summary, a centimeter-scale WSe2/Bi2O2Se heterostructure-based optoelectronic device was successfully 

13 fabricated on an Al2O3 substrate by PLD. Structural and optical properties of the WSe2/Bi2O2Se heterostructure 

14 were confirmed by AFM, Raman spectroscopy, and UPS, and high-quality-heterostructure thin films with type-II 

15 band alignment were confirmed. As a result, the photoresponse was evaluated as 0.96 mA/W. More interestingly, 

16 although the WSe2/Bi2O2Se photodetector was fabricated without using lithography, it showed an on/off ratio of 

17 approximately 110% (the on/off ratio of the Bi2O2Se single film is only 7%). Thus, in this study, we improved the 

18 photoresponse by using the WSe2/Bi2O2Se heterostructure while avoiding the complex device fabrication process 

19 of conventional 2D-material-based photodetectors.

20 Experimental Section

21 Growth of WSe2/Bi2O2Se thin film: The Bi2O2Se and WSe2 thin films were deposited on the Al2O3 substrate by 

22 PLD with a 248 nm KrF excimer laser (Coherent, Compex Pro 205F). We used supersaturated commercial targets 

23 (nonstoichiometric WSe2.2 and a Bi2O2Se1.3 target from LTS Research Laboratories) to prevent selenium deficiency. 

24 Acetone, methanol, isopropyl alcohol, and deionized water were used to remove organic particles and/or residues 

25 on the substrates. The Bi2O2Se layer was deposited at a 4 Hz repetition rate, a laser energy density of 1.8 J∙cm−2, 

26 a substrate temperature of 400 °C, and a high vacuum condition (~2.0 × 10−6 Torr) without any carrier gas. 

27 Subsequently, WSe2 was deposited at a 3 Hz repetition rate, a laser energy density of 1.1 J∙cm−2, a substrate 

28 temperature of 400 °C, and a 100 mTorr Ar gas environment.
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1 Device fabrication: To determine the performance of WSe2/Bi2O2Se heterostructure photodetectors fabricated 

2 without using a lithography process, we fabricated a two-terminal device by wiring with Cu wire and Ag paste. For 

3 the photoresponse test, a 150 W Xe lamp (Model 10500, ABET Technology) was used, which was calibrated as 

4 AM 1.5 G (100 mW∙cm−2) using a Si photodiode (Bunkokeiki). The wavelength of the Xe lamp was controlled by a 

5 monochromator (Mmac 200, Dongwoo Optron).

6 Characterization of WSe2/Bi2O2Se thin film: Raman spectroscopy (Renishaw, with wavelength of 514 nm) was 

7 used for structural analysis. Spectral acquisition was measured in the wavelength range of 110–300 cm−1. To 

8 confirm the coverage of the heterostructure, Raman mapping was performed at 121 points in the range of 5 mm in 

9 width and height. The chemical state and electrical structure were confirmed by XPS and UPS (Thermo Fisher 

10 Scientific, Nexsa, monochromatic Al Kα line at 1486.69 eV based on C 1s at 284.8 eV).
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6 A simple device fabrication process using pulsed laser deposition is proposed to fabricate the heterostructure of 

7 WSe2/Bi2O2Se thin films. The developed device has a high photodetection performance with a 110% on/off ratio 

8 without a lithography process for interdigitated electrode patterns.
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