
LTS Research Laboratories offers high performance Lithium Nickel Manganese Cobalt Oxide (NMC) powders, available in various compositions used in next generation Lithium-ion batteries. LTS can provide following NMC grades for research or commercial purposes:

NMC333 NMC532 NMC622 NMC811

INTRODUCTION:

The increasing demand of solid-state batteries has led to more consumption of solid-state electrolytes. One of the most successful solid-state battery systems is the one made with Lithium Nickel Manganese Cobalt Oxide (NMC) as a cathode material. The most common cathode combination is Ni/Mn/Co:3/3/3 mol% also known as NMC333. Depending on application this combination can be varied. Typical available cobinations are NMC333, NMC532, NMC622, NMC811.

PROPERTIES:

- Good energy density
- Long cycle life
- Excellent high-Temperature behavior, lowest self heating rate of all cathode powders
- Low cost

APPLICATIONS:

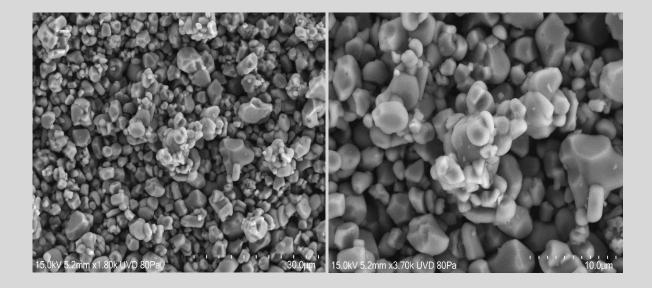
- EV vehicles Automotive batteries
- Medical devices
- Electric tools
- Consumer Electronics
- E-bikes

SPECIFICATIONS:

Element Content (wt%)									
Li	7.40±0.20wt%	Со	12.60±1.00wt%	Fe	0.005	Na	0.04	Mg	0.015
Ni	36.30±1.00wt%	Mn	11.30±1.00wt%	Cu	0.002	Ca	0.015		

Particle Density	≥1.80g/cm3			
Specific Capacity	≥172.0mAh/g			
РН	10.80~11.60			

Lithium Nickel Manganese Cobalt Oxide NMC 622 Cathode Powder


The following characterization results reflect on the NMC 622 offered by LTS Research Laboratories Inc.

X-Ray Diffraction (XRD)

Abs_Scan_5190_2s_NMC623_889-092120

2000 — 2

Scanning Electron Microscopy (SEM):

